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V I S C O E L A S T I C  P R O P E R T I E S  O F  F R A C T A L  M E D I A  

V.  V.  N o v i k o v  a n d  K.  V.  V o i t s e k h o v s k i i  i UDC 536.19; 539.24 

Temporal fractal sets for analysis of viscoelastic properties of nonhomogeneous media are con- 
sidered. A fractional derivative directly related to fractal dimension is constructed. The rela- 
tionship between the diffusion of the relaxation spectrum and the fractal dimension is estab- 
lished. 

I n t r o d u c t i o n .  The objective of the present work is to determine the relationship between the fractal 
dimension of a set, the fractional derivative, and the diffusion of the relaxation spectrum of a nonhomogeneous 
structure. Determining this relationship makes it possible to extend the physical interpretation of known 
experimental da ta  obtained from studies of the relaxation properties of nonhomogeneous media. 

Various systems that are superensembtes consisting of hierarchically subordinate statistical ensembles 
have been consistently described within the framework of fractal models [1-7]. 

The concept of a fractal set, i.e., a set with fractional dimension, which was introduced by Mandelbrot 
[1] at the beginning of 1960s, has been widely used in various areas of the physics of condensed mat te r  [2-7]. 
Important  results have been obtained in describing systems with large fluctuations and stochastic structure 

[5-7[. 
The main procedure for obtaining a fractal set is as follows: from a set M of whole dimension d, its 

parts are removed under a particular law. The  parts of the set are removed (replaced) by an iterative process. 
The set obtained is such a manner is self-similar with fractional dimension d f. For example, a Cantor  set is 
obtained as follows: a segment of unit length is divided into three equal parts, the middle part  is removed, 
and each of the remaining two segments is divided again into three equal segments, etc. (Fig. 1). Performing 
this procedure n times (n -* oc), we obtain a set which is called a "Cantor set" or Cantor "dust." 

An important  characteristic of a fractal set is its dimension d I, which 5an be determined from the 
dependence of the mass (measure) of the fractal set hi] on Ld~, where L is a linear scale [1, 2]. 

It should be noted that  a main feature of fractal structures is the dependence of their properties on 
L ~ [1-7], where a is a constant number. In real media, this dependence is usually valid in a certain limited 
region (region of intermediate asymptotic behavior), which is defined as a ~< L <~ ~, where a is a lattice 
constant (microscopic constant) and ~ is the correlation length. In the range of scales L >> ~, the medium is 
structurally homogeneous and can be characterized by effective properties. 

Along with geometric, i.e., spatial fractals, increased at tention has recently been given to temporal  
fractals - -  fractal sets of times of events, in which the next event takes place at interval 7- after the previous 
one. Temporal fractals have been used to s tudy the dynamics of reactions in disordered media taking into 
account the presence of spatial and temporal  disorder [8-11]. 

Polymers and composites are nonhomogeneous materials with "long memory," in which the strain 
(stress) in a given particle at a specified t ime depends not only on the current values of strain, temperature,  
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and other  determining parameters but also on the values of these parameters at each preceding time. 
According to the Boltzmann assumption, the strain (stress) caused by the applied stress (strain), is 

delayed owing to the intrinsic "memory" property of the material [12]. 

If we assume that  the strain of a medium depends on time, then, to determine the strain-stress 
relation, according to the Boltzmann principle, we can divide the entire time interval (0, t) into n parts  
(Ark = tk+l -- tk). Next, it is assumed that  the strain of the body ~(Tk) is a constant value in each t ime 
interval (tk, tk+l) and each strain component  ~(rk) influences values of the stress tensor a(t). Thus, in 
each interval Ark, the stress is equal to r = R(t,  rk)c~(rk)ATk. Here R(t, r) is the influence coefficient 
(relaxation kernel), which usually has the form [13] R(t  - r )  = C/( t  - 7) ~, where C is a constant (does not 
depend on time). 

The  Bottzmann principle implies that  the total stress a( t )  at t ime t is the sum of the contributions 
ak(t) from the strain tensor in individual intervals (tk, tk+l), i.e., 

a(t) = E ak(t) = R(t, rk)~(Tk)ATk. 
k=l k=l  

In this case, as Ark --~ 0, the stress a(t) at t ime t is equal to 

t 

/ R(t, r)~(r) dr. (7(t) 
, 1  

0 

Similarly, we can write 

t 

= / H(t, T)a(v) dr, ~ ( t )  

0 

where H(t,  ~-) are the influence coefficients (creep kernel). If the influence coefficients have the form 

R(t, r) = Coh(t - 7), n( t ,  r )  = & 5 ( t  - r ) ,  (1) 

i.e., the medium has no "memory," Eqs. (1) becomes a = CoG and ~ = Soa. In other words, we have 
Hooke's linear law, where c~ and e are the stress and strain tensors and C and S are the tensors of elastic 
and compliance moduli, respectively. 

We consider media in which the "memory" is total  but  not ideal, i.e., in the interval (0, t), it is preserved 
only in certain t ime intervals. When the "memory" is switched on, the &function in (1) is modified into a 
bell-shaped curve, whose width is determined by the t ime interval r within which the strain (stress) depends 
on the stress (strain). 

Two limiting processes can be distinguished in the evolution of such systems. In the first process, the 
system passes through all states continuously, without any losses. In the second process, some segments of the 
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continuous states of the system are eliminated from under a specified law. This process can be characterized 

as a process generated by a fractal s ta te  with specified fractal dimension di.  

To describe processes with "memory," Nigmatulin [14] used a fractional integral. Analysis was per- 

formed for a Cantor  set. Nigmatulin [14] assumed tha t  in a system with specified spatial geometry, only par t  
of states "survive" during evolution, and the others are irreversibly lost, i.e., become unat tainable for the 

system. The  loss of states was governed by the i teration procedure for obtaining a Cantor set. In [14], it is 

shown tha t  in this case (in the limit N --~ oo), the process can be described using the fractional integral 

1 

d-qf(x) 1 f 
dx-q - F(q) (1 - y)q-lf(yx)gy, 

0 

where the exponent q indicates the fraction of preserved states and coincides with the fractal dimension of 

the set. 
In [15-17], it is shown that  in a description of materials  with "memory," integral operators  can be 

replaced by differential operators.  
The propert ies  of a random medium can be described using a fractional derivative [13-23]. For example, 

the mechanical model of a deformable body can be represented as a certain sys tem of elastic and viscous 

elements [13]. 
For an elastic element, Hooke's  law is valid: 

= ( 2 )  

( E  is Young's modulus).  
For a viscous element, the rate of change in linear dimensions is given by ds/dt = (1/??)a or 

= d /dt, (3) 

where ?7 is the viscosity of the material.  
The  relation between a and  s, which contains the elasticity law (2) and the viscosity law (3) as the 

limiting cases, can be written in tile form (see [13, p. 125]) a(t) = Kdqs(t)/dt q, which leads to Hooke's  law 

for q = 0 and K = E and Newton's  viscosity law for q = 1 and K = 77. 
Thus,  to describe the viscoelastic properties of  media with intermediate states, it is possible to assume 

a fractional value for q in the s t rain-s tress  relation. 
There  are several definitions of fractional derivatives [18, 19]. Among those used most widely is the 

definition of a fractional derivative in the Riemann-Liouvi l le  sense: 
x 

dqf(x) 1 a m f @ 
dxq - F ( n - q )  dx n J ( x - y ) q - n + l  for n - l ~ < q ~ < n ,  

a 

where F(n) is the gamma  function. 
We consider the definition of a fractional derivative. The  functions for which the full increment 

is representable as 

= f(x + - f(x) 

Ahf = A(Ax)  h + c~(x)(Ax) h [plim a (x )  ~ 0 for (Ax) h --+ 01, (4) 

can be divided into two classes: 
(a) If  h = 1 or 0, then f(x) belongs in the classical set of differentiable functions; 
(b) if h # 1 or h # 0 (Hhlder parameter) ,  then f(x) belongs in the set of functions for which derivatives 

in the usual sense do not exist but  a fractional derivative exists [19]: 

dhf(x) Ah f  Ax h ---* O. (5) 
dx h = lim Axh, 
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From (4) it follows that  if we introduce logarithmic metric, the increment of the function log A h f  is 
linear in the increment of the independent variable log Ax,  and. hence, we can apply the s tandard differential 
calculus. 

1. F r a c t i o n a l  D e r i v a t i v e  a n d  F r a c t a l  D i m e n s i o n  o f  Se t .  Sometimes, fractals are defined as 
continuous functions which have no derivatives (tangents) at any point [24]. In this connection, in an analysis 
of the local properties of a fractal set, it is reasonable to use a fractional derivative. 

To explain the relationship between the fractional derivative and the fractal dimension, we consider 
the definition of the local density of a homogeneous set. The increment in weight for a set f2 of dimension d 
is defined by A M  = (Ax)dp, where p is the density of the set and x are the linear dimensions of the set. If 
the objects are homogeneous and d is an integer, the local density is equal to 

ZXM(x) p(Z~x) ~ dM(x)  lira ~ = lim - p, 
p(x) - d# = a~,-~o A#  ~ z - 0  (Ax) d 

where p is the density of the homogeneous object, A M  = p(x )Ax  d is the increment in weight in the neigh- 
borhood of the point x, and A# = (Ax) d is the increment in measure of the set fL on which the density p is 
defined. 

For fractal structures obtained by removal of a certain subset from the main set ~, the increment in 
weight for a fractal set Mf  is equal to A M f  = p fAxd f ,  and the local density is 

dMf(x_......~) lim AMy(x)  lim Pf(Ax)d:  = p y A x  d:-'i. (6) 
pf(x)  = d# = Aw--.o A #  -- Az -o  (Ax)  d 

From (6) it follows that  

dMf(x )  [ 0 for d < dr, 

pf(x)  = -~P = I pf  for d = d f ,  

c~ for d > d f .  

(7) 

Thus, according to (7), the derivative d M f ( x ) / d #  has a finite value if the increment in measure for the 
set A# is measured not in units (Ax) d but  in units (Ax)dS. In addition, from (6) it follows that  df has the 
meaning of the dimension of the Hausdorff-Besicovich measure [1, 2]. 

The  result obtained can be generalized as follows. We assume that  on a fractal set f i r ,  a function f ( x )  
is specified and the point x = x0 and its neighborhood belong to the set ~ty with dimension dr. W'e divide 
the segment [x, x0] into N parts. As the unit of measurement at the n th  stage, we use Axa: 

(Ax(n)) ~ = (1/Nn)(xo - x), 

where Nn = j'~, i.e., Nn = jn  gives the number of segments at the n th  scale level, and j is the number of 
blocks (ramification) tha t  make up an elementary fractal figure (for a Cantor set, j = 2). Then,  at the n th  

scale level, the length of the kth part i t ion segment is equal to 

Ax(k n) =  n(x0 - x), (8) 

where ~ is the scaling factor (the similarity factor for the set Qf),  ~ < 1. The number of part i t ion points on 
the segment Ix, x0] at the n th  stage is mn = 1, 2 . . . .  , jn+l. This partitioning of the segment Ix, x0] allows 
each point (element) of the fractal set to be correlated to a point of ultrametric space, whose geometric image 
is represented by a Keily tree [24-26]. 

According to the definition of the fractal dimension dy = a, the relation (1/~) na = Nn holds. 

From (8) it follows that  lim Ax (n) = 0. Thus, A x  (n) is an infinitesimal value, i.e., as n --* c~, the 

ultrametric space becomes continual. 
In what  follows, the increment in argument at the n th  scale level Ax~ 0 is denoted by Ax, i.e., Ax = 

Ax (n). The coordinates of the parti t ion points at the n th  scale level are given by xk = x o -  k A x  (n) = x o -  kAx ,  
where k = 0, 1, 2, . . . ,  jn+l. Thus, the following equalities hold: 
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A x  = (xo - x ) / ( 1 / ~ )  n, A x  '~ = (xo - x ) ' V g n ,  

We consider the  function increment  

( 1 / ~ F  - = j -  = g ~ .  

A ~ f ( x )  = f ( x o )  -- f ( xo  -- A x ) ,  (9) 

which will be called the  first difference. 

From (9) the second difference A2~f(x) can be defined as the  squared opera tor  An:  

A ~ f ( x )  = A a ( A , ~ f ( x ) )  = A ~ f ( x o )  - A , ~ f ( x o  -- A x )  = f ( x o )  -- 2f (xo  -- Ax)  - 2 f (xo  - 2Ax) .  

The  third  difference is obta ined similarly: 

A ~ f ( x )  = f ( xo )  - 3f (xo  -- Ax)  + 3 f (xo  -- 2Ax)  -- 3 f (xo  + Az) .  

Hence it follows tha t  the k th  difference A k f ( x )  is expressed in terms of  the a l ternat ing binomial  

coefficients: 

m m! jn+l.  
A k f ( x o )  = Z(--1)~:Ckn(f (xo -- kAx)) ,  Can - k!(rn - k)! '  m = 

k = 0  

At the  same time, from the definition of A s  it follows t h a t  f ( x o  - Ax )  = f (xo)  - A a f ( x o )  = (1 - 

A n ) f  (x0), where 1 is an identi ty operator .  Then ,  we can write f ( x  - 2Ax)  = (1 - A ~ ) f ( x o  -- A x )  = 
(1 -- A~)2f (x0) .  Generally, f ( xo  - k A x )  = (1 - A ~ ) k f ( x o ) .  Hence it follows tha t  f ( x )  --- (1 - A a ) m f ( x o )  , 
since, according to (8), x = xo - m A x ,  where m = j,~+l. 

Expand ing  the  binomial  (1 - A~) k by Newton ' s  formula, we ob ta in  

1 k k A k  f ( x )  = ~-'~(- ) C m a f (x0 ) .  (10) 
k=O 

The  general t e rm of  the sum on the r ight side of  (10) is b rough t  to the form 

k k k A k a f ( x o ) ( A x a ) k  
. C m A a f ( x o )  = C m (Axa)k  

= m ( m  - 1 ) . . - ( m  - k + 1) A ~ f ( z o )  (xo - z)  c~k 

where  Pmk = m ( m -  1 ) - - - ( m -  k + 1)/Nn,  k = 1, 2, . . . ,  m.  

series: 

o r  

= P m k  A~f (Xo)  X) ,k  ' 
k ! ( A x ~ ) k  (xo - 

Thus,  (10) can be wri t ten as 

f ( x )  = Z ( - 1 )  k P m k A ~ f ( x o )  x)ak 
k=0  ( / x z ~ )  k ( z 0  - �9 

For finite k and an infinitely large m (m --~ co), for the funct ion f ( x )  we obta in  an analog of  the Taylor  

_~ jk f (ak)  (Xo) 
f ( z )  = k! (xo - x)  ~k, 

k=O 

f ( x ) = ~ ' ~ a k ( x o  - x )  ak, (11) 
k = 0  

where  ak = (jk/k!)f(c~k)(xo); f(ak)(xo) = lim ( A ~ f ( x o ) / ( A x C ' )  k) is the  k th-order  fractional derivative of 
AX---* ~ 

the  funct ion f ( x )  at the  point  x = x0 on the fractal  set f2f. 

The  coefficients of series (11) depend not  only  on the k th-order  fractional  derivative of the funct ion 

f ( x )  at the  point  x = x0 bu t  also on the  ramificat ion of the  fractal  set j on which the  funct ion f ( x )  is 

specified. F rom (11) it follows tha t  the  first derivative (k -- 1) is defined by 
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daf(x~ = f ( c ' ) ( x o ) =  lim A~f(x~ -- lim f ( x ~  f ( x ~  Ax)  
dx a ~x~--*o A x a A z~ ~0 A X a ' 

which coincides with the definition (5). 

The  fractional derivative can be expressed in terms of an integral of the function f ( x )  on the fractal 
set fly. The  integral is equal to the limit of the integral sum 

b o~ 

f f (x ) (dx)  ~ = lim ~-" f (xo  - ( k -  1)Ax)(Ax)  a. (12) 
A x  ~ --*0 

a k = l  

Examinat ion of the function ~(x)  = ( x -  t ) ~ - l f ( t )  dt shows that  ~ 4~(x) = f ( x ) ,  i.e., ~ (x)  is an 

0 
analog the primitive for the function f ( x )  and the following equation holds: 

x 

f f ( t ) (dt)  ~ : f (  x - t ) ~ - l f ( t ) d r .  

0 0 

Thus, we determined fractional integrodifferential representations that ,  by construction, are related to 
the procedure of designing a fractal set that  defines the properties of the function f (x ) .  

2. V i s c o e l a s t i c  P r o p e r t i e s .  To establish the relation between stresses a and strains e for media in 
which the states depend on time t and part  of the states are eliminated (removed) under a part icular  law, we 
use the Bol tzmann superposition principle and the fractional integrodifferential representation. 

We assume tha t  the deformation of a particle (local region in a homogeneous state of stress) begins at 
t ime t = 0. We divide the segment [0, t] by points as described above: 70 = 0, T1 > T0, 72 > ~-1 . . . . .  Tn = t > 
rn-1; the points coincide with the ends of states that  were not eliminated. Thus, AT,~ = vn+l -- 7-,~ = t /Nn,  
where Nn = jn is the number of segments, a = df  = l n j / I n (  -1 is the fractal dimension of the set, and 
is the scaling factor (similarity parameter),  which describes the decrease in size of the block (region) at each 
scale level [2]. 

Considering the strain-tensor components to be constant and equal to vk-1, ~-k on each segment [ekl(Tk)], 
it is possible to assume that  each value of the component  ekt(Tk) influences values of the stress-tensor compo- 

nent o'ij(Tk) at t ime t under the linear law a~k)(rk) = Ci jk lEkl (Tk) ,  where Cijkl  ---- C i j k l ( t  , Tk) is the influence 
tensor. According to the Boltzmann superposition principle 

N n  

~ij(t) = ~ cijkt(t ,  ~n)~kZ(T~)(~XT~) ~, 
n = l  

passing to the limit Ar~ a --* 0, we obtain 

t 

~j(t) = / c~z(t, ~)e~(~)(d~)" 
0 

The  value ct = 1 corresponds to a continuous process. The expressions for the strains ekZ in terms of 
the stresses aij are obtained similarly: 

t 

(t) = / s~jkz(t, ~)~k~(T) (d~) ~ ~ij 

o 

Experiments  show that  under rapid loading, materials with "long memory" react instantaneously to 
current stresses, after which creep and relaxation begin. This indicates that  the influence coefficients CijkI  
and Sijkt (kernels) have an additive singular component  (proportional to the &function) [21, 22], i.e, 

c~jkz(t, ~) = c~ - , )  + P~jk~(t, ~), sijkt(t ,  ~) = s~ - ~) + II~jk~(t, ~), 
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where C~ and S~ are the moduli of instantaneous elasticity and compliance and Rijkl(t ,  ~'), Ilijkz(t, w) are 
the relaxation and creep kernels, respectively. 

Thus, 
t t 

o o 

The differential equations with fractional derivatives that  correspond to (13) have the form 

d~a = C d~- d %  = S clan 
dr  a dr----- ~ + R~, dr  a dr  ~ + na.  (13 ~) 

For example, for continuous processes (a = 1) for Maxwell and Voigt media, Eqs. (13') become [22] 

da d~ d~ 1 da 1 
dt - ~1-~ + #r - - -  dt p dt + -q a, 

where ~/is the viscosity of the medium and # is the shear modulus. 
For a Ziner medium [22], which combines Maxwell and Voigt media, the equation becomes 

( (14) 
a + %  dt a = #  ~ + T a  d t a ] ,  

where #0 = #(w) ~--0' #oc = ~--oclim p(w) ,  T~/Ta = # 0 / # ~ ,  and w is the frequency of action on the sample. 

The equations with the fractional derivatives (14) are conveniently solved using a Fourier transform: 
oo  

f ( w )  = ~ f ( t )  exp ( - i w t )  dt; (15) 

o o  

1 / f(w) exp (iwt) dw. (16) f ( t )  - 
- - 0 0  

Using the rule of finding a fractional derivative (see (11) and [19]), from (15) we obtain 
oo  

d~f(t)dt ~ = 1_2~r f ( i w ) a f ( w )  exp ( iwt)  d~z. (17) 

- - 0 0  

I . 

Applying the Fourier transform (15) to (14) with allowance for (17), we obtain ~ + ( i W T ) ~  = 2#0(~ + 
(iwr)%z), whence p( iw)  = # ~ - ( # o o - # o ) / [ l + ( i w ~ ' E ) a ] .  Taking into account that  #(iw) = # + i # '  [# = Rep(iw), 
#' = I m  #(iw)], we have 

#oo - P 1 + (w~-) a cos (Tra/2) 

P~ - it0 1 + 2(wz)a[cos (Ira/2) + (wT)a] ' (18) 

- , '  sin 
i t~ - #0 1 + 2(w~-) a [cos (~ra/2) + (w'~-)a]" 

The parameter a is related to the fractional dimension of the fractal set and is a characteristic of localization 
(diffusion) of the relaxation spectrum. 

Figure 2a and b shows dispersion dependences of the real # (a) and imaginary #~ (b) parts of the 
relative shear modulus of a viscoelastic medium on log t* (t* = w~-) [curve 1 refers to a = df  = 0.63 (Cantor 
set) and curve 2 refers to a = 0.91. 

To determine the dependence of the distribution density of the relaxation spectrum and the parameter 
a,  we consider the following problem. 

Let the strains be described by the step function r = ~0~?(t), da/d t  = r where ~(t) is the Heaviside 
function and 5(t) is the Dirac delta function. Then, for the stress a, we can write [22] a -- 2it(t)~0, it(t) = 
it0 + O~(t), where, for a Ziner medium, the function ~p(t) has the form 
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~tL(t) = (#oz - #0) exp (-t/'re). (19) 

If the medium is described by a discontinuous distribution of the relaxation time Ti, by analogy with 
(19), we write 

�9 ,(t) = (#oc - #o) E Ni e x p ( - t / ~ ) ,  E ni = 1. (20) 
i i 

Conversion from the integral sum to the integral (12) according to (20) yields 
Or 

= / fl(T) exp (-t/v~)(dv) ~, (21) ~ , ( t )  

where f l  (r) is the density of the relaxation spectrum. Formula (21) can be brought to the form 

= / f(7") exp (-t/r~)(dln r) ~. ~5~(t) 

For the relaxation time distribution function f ( r ) ,  the normalization condition is given by 

f - tt~ #o. 
- - 0 0  

Thus, the relation between the shear modulus #(t)  and the distribution function f(T) becomes 

= + / 
/ I  

f ( r )  exp(--t/Te) (dln T) ~.  

--oo 

If the Fourier transform #(t) is known, the Fourier transform of the function f ( r )  has the form [21] 

f(1/w) = • #(w exp (• (22) 

Substi tuting the values of #'(t)  from (18) into (22), it is possible to determine f(~-) for a Ziner medium: 

(#oo - #0) sin (aTr) 
I(T) = 27r{cosh [In (a(~/r~))] + cos (aTr)}" 

The normalized density distribution of a Ziner medium fo@) = f ( r ) / ( # ~  - #0), or 

sin (aTr) 
fo(T) = 27r{cosh [a In (~-/rs)] + cos (a~r)} 

for two dynamic states is shown in Fig. 3. For a -- 0.9 (curve 2 in Fig. 3), i.e., for a medium whose dynamics 
is close to the dynamics with continuous states, the function f0 in semilogarithmic coordinates becomes the 
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Dirac delta function with a = 1. For a medium with random dynamics that generates states with fractal 
dimension a = d / =  0.63 (curve 1 in Fig. 3), which is equal to the dimension of Cantor "dust," the function 
f0 has a diffused spectrum, i.e., the order of the fractional derivative a can be treated as a characteristic of 
the diffusion of the relaxation spectrum. 

The relation between the dispersion of the relaxation time of random dynamics 72 and the parameter 
a has the form 

o o  

7r 2 1 - -  ~2 
72 = ln'2(w/~)fo(7) dln 7- -- 3 a 2 

- - 0 0  

i.e., ~/2 (~r2/3) (1 2 ', = -- df)/d'f .  
Thus, the relationship between the fractal dimension, the fractional derivative, and the diffusion of the 

relaxation spectrum is established from the viscoelastic properties of a disordered fractal medium. 
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